6 Degree of Freedom Autonomous UAV
Long Vo, Liam Berti, Ritesh Misra, Levi Burner
Department of Electrical and Computer Engineering

Background

- Quadcopters adjust orientation to translate; they can only control 4 Degrees of Freedom (DOF)
- This limits possible motions and decreases mobility
- A 6 DOF UAV is not restricted in this manner
- Designs found in literature are complex which makes construction and controller design difficult

Design Considerations

- Goals:
 - Full 6 DOF control when UAV is close to level
 - Maximum agility when in the level position
 - Autonomous height hold and velocity control
- Solution:
 - 4 side rotors mounted on an octorotor frame
 - Suitable for close tracking of moving ground targets and high-speed navigation in constricted environments

How it Works

- Optical Flow Sensor
 - Camera and ASIC compute translational velocity estimate at 50 Hz
- Custom Power Distribution and Sensor Interfacing Board
 - ATMEGA328P microcontroller reads sensors and commands side rotors
 - Isolates noisy motor circuitry from computing and sensing circuitry
 - Returns real time current and voltage usage statistics
 - 8 channel wireless circuit breaker safely shuts down motors
 - 30 A per channel - 240 A total
- Companion Computer
 - Raspberry Pi 3 runs ROS nodes
 - Motion profile generated at 10 Hz
 - Custom PID controller and plant model update at 50 Hz
 - Commands throttle, orientation, and side rotor thrust
- Range Finders
 - Range finders use reflected lasers to detect height of drone
 - First is used for 0-1.2 meters
 - Updates at 30 Hz
 - Second is used for 1-10 meters
 - Updates at 100 Hz
- Flight Controller
 - SPF4EVO (Common racing drone flight controller)
 - Runs orientation controller
 - Accepts throttle and orientation targets from companion computer
 - Relays IMU data at 100 Hz
- Side Thrust Motors
 - 1900 kV
 - 6" dia. 4.5" p. prop
 - 0.8 kg peak thrust
- Main Thrust Motors
 - 900 kV
 - 10" dia. 4.5" p. prop
 - 1.2 kg peak thrust

Testing Results

Autonomous setpoint tracking was tested using a custom motion capture system and onboard sensors; jerk and acceleration were greater than possible with a traditional quadcopter.

Acknowledgements

- Dr. Dickerson and Dr. Dallal for their support throughout the semester
- Dr. Mao for his mentorship and encouragement
- Jim Lyle, Bill Mcgahey, and Corey Weimann for the use of SERC resources
- Pitt’s Robotics and Automation Society (RAS) for providing parts
- Pitt SSOE ECE Department for providing funding to RAS and Senior Design
- Pitt’s 2016-17 and 2017-18 International Aerial Robotics Competition team whose previously developed software made the project feasible

References

- Pitt’s International Aerial Robotics Competition team’s code available at: github.com/Pitt-RAS/iarc7_common