The Advantages of a Control Theoretic Approach to Monocular Computer Vision

Levi Burner, PhD Student

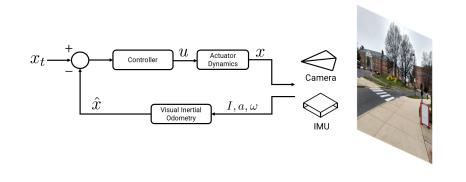
Perception and Robotics Group Electrical & Computer Engineering Department University of Maryland, College Park

Agenda

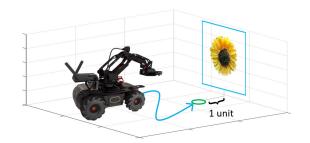
- Traditional Robot Control with Vision
- Control Theoretic Approach
 - Phi and Tau Constraints
 - Stability Invariance
- Conclusion

PRG

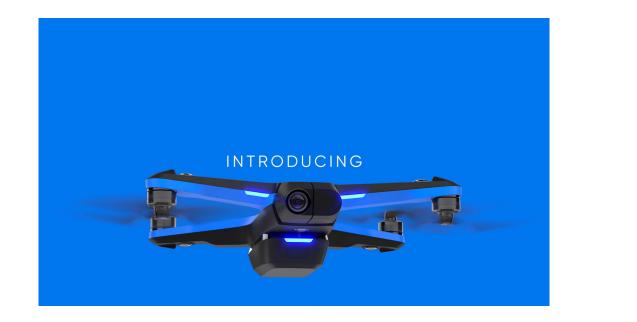
• Summary of how to use in your own projects



$$\mathbf{F} \coloneqq \frac{\dot{\mathbf{X}}}{Z} \Longrightarrow \mathbf{X}(t) = \underbrace{\begin{bmatrix} 1 & 0 & \int_{0}^{t} F_{X}(\lambda) \Phi_{F_{Z}}(\lambda) d\lambda \\ 0 & 1 & \int_{0}^{t} F_{Y}(\lambda) \Phi_{F_{Z}}(\lambda) d\lambda \\ 0 & 0 & \Phi_{F_{Z}}(t) \end{bmatrix}}_{\Phi(t) \coloneqq} \mathbf{X}_{0}$$

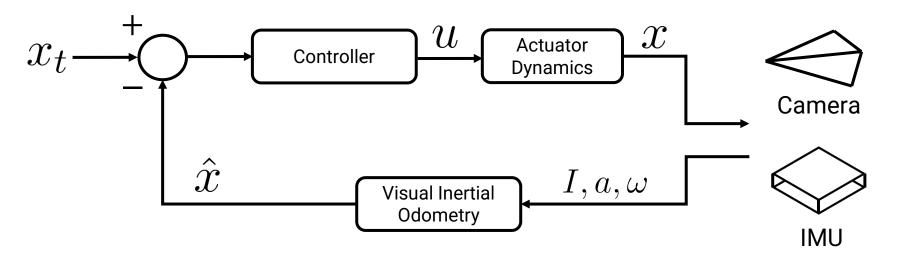


Robots Tracking Trajectories with Cameras



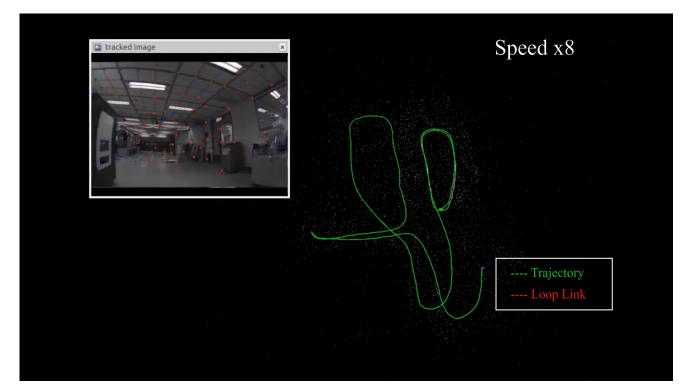
"Introducing Skydio 2" - <u>https://www.youtube.com/watch?v=imt2qZ7uw1s</u> "With you, Spot can" - <u>https://www.youtube.com/watch?v=VRm7oRCTkjE</u>

Typical Robot Visual Tracking Control (in academia)



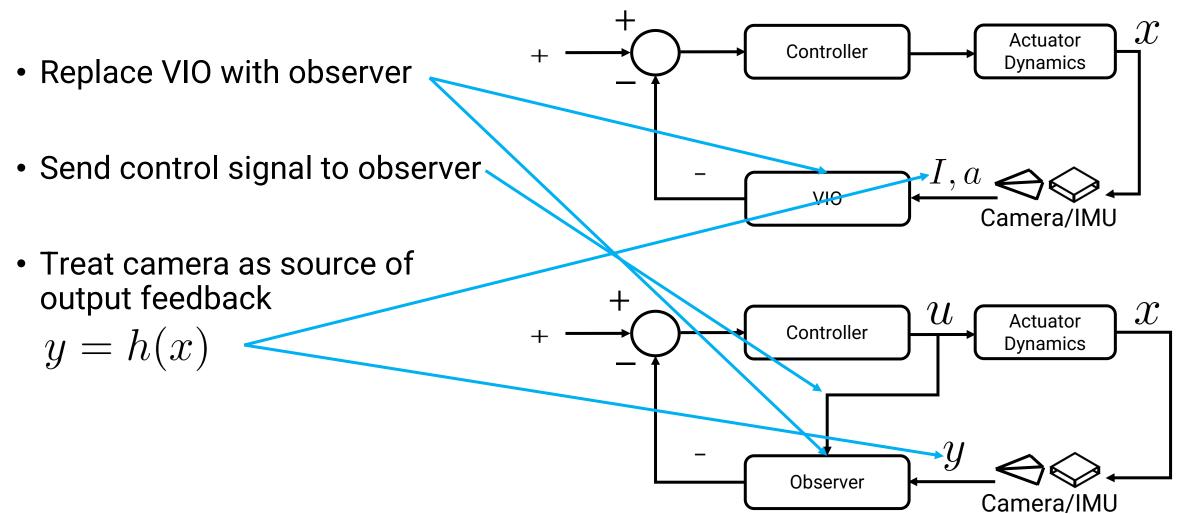
Visual Inertial Odometry

- Tracks points/patches scattered across FOV
- Combines IMU and tracked points through optimization
- Some methods use patches instead of points
 - Usually try to minimize a photometric loss with either an optimizer or iterative Extended Kalman Filter



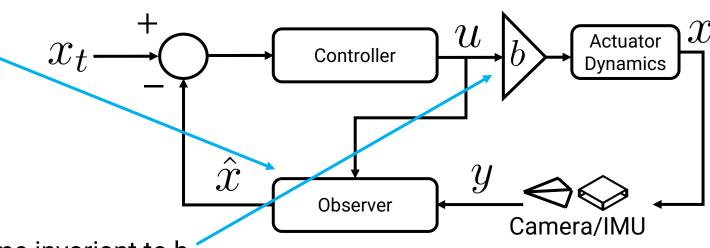
VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator, Tong Qin, Peiliang Li, Zhenfei Yang, Shaojie Shen, *IEEE Transactions on Robotics*

Control Theoretic Approach



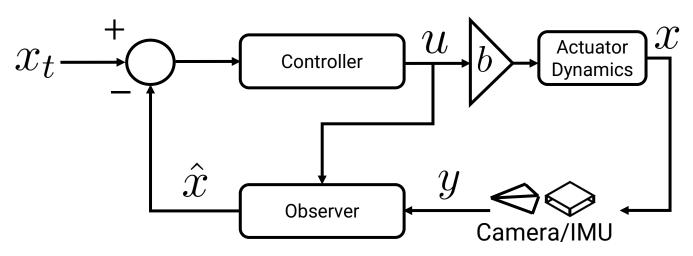
Advantages of Control Theoretic Approach

- · Careful choice of y allows observer to be linear
 - Due to two closely related linear equality constraints
 - Tau constraint
 - Phi constraint
 - Can easily prove stability
- Sometimes u can replace IMU
 - IMU acceleration is noisy
 - u is not noisy
 - The closed loop dynamics become invariant to b
 - Robot becomes "very stable"



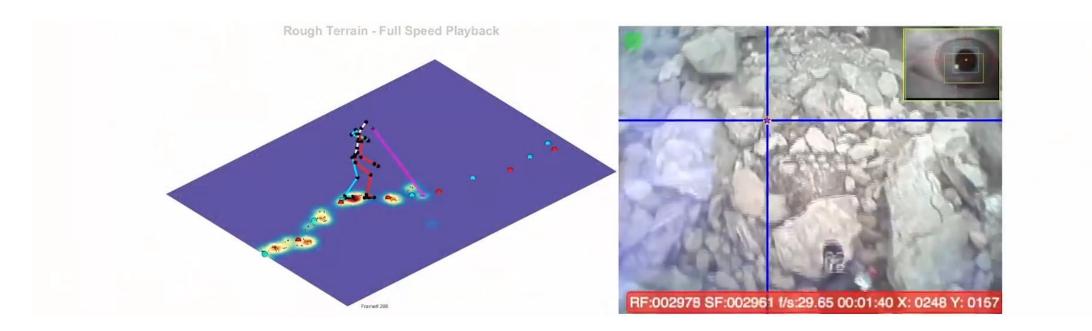
What should y be?

- y = h(x)
- We have the luxury of choosing h
- Bio-inspiration?
 - What might humans measure?



Mammalian Vision

• When human's walk they switch their gaze

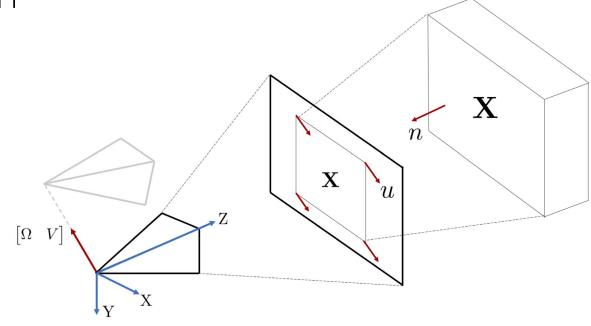


Matthis, J.S., Yates, J.L., and Hayhoe, M.M. (2018), "Gaze and the control of the foot placement when walking in natural terrain". Current Biology

Time to Contact

- Intuitively:
 - Rate of change of object size
 - Sense of when an object will ! ...
- Mathematically:

$$\tau(t) = \frac{Z(t)}{\dot{Z}(t)}$$



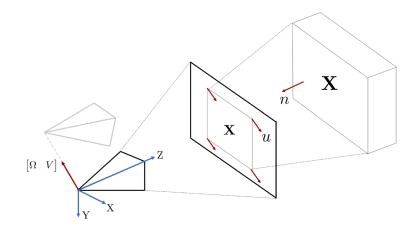
Measuring Time to Contact

- We can describe where pixels in a patch with an affine "warp"
 - For those taking 733 one way to measure a warp is with the LK algorithm

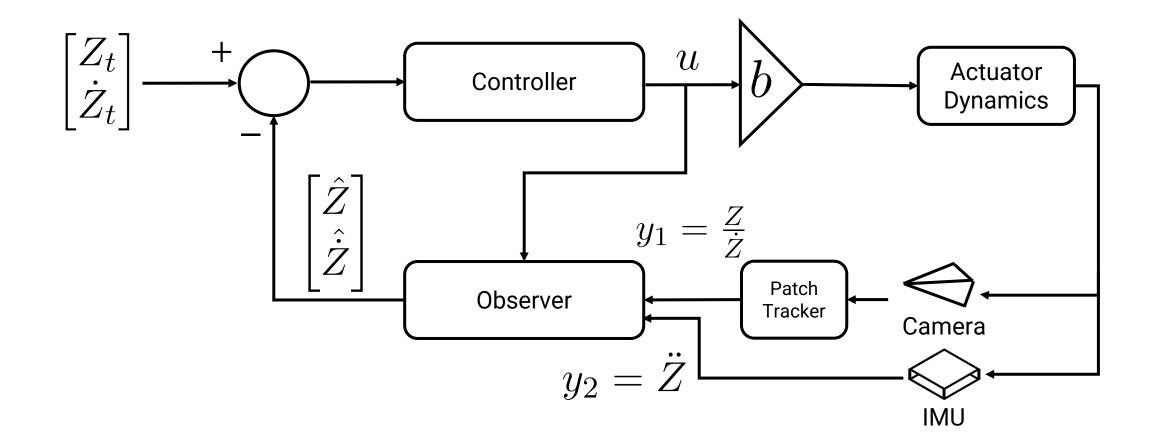
$$\mathbf{x}(t) = \underbrace{\begin{bmatrix} Z_0/Z & 0 & (X - X_0)/Z \\ 0 & Z_0/Z & (Y - Y_0)/Z \\ 0 & 0 & 1 \end{bmatrix}}_{A:=} \mathbf{x}(0)$$

- Differentiating gives optical flow
 - But the affine terms are time-to-contact!

$$\mathbf{u_x} = \frac{d\mathbf{x}(t)}{dt} = \dot{A}A^{-1}\mathbf{x} = -\begin{bmatrix} \dot{Z}/Z & 0 & \dot{X}/Z \\ 0 & \dot{Z}/Z & \dot{Y}/Z \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x}$$



Simplified Case – Z Only



Full Case – Tau/Phi Constraint

- Generalize to frequency of contact
- Recognize F defines an ODE
- ODE has closed form solution
 - Linear Time Varying System
 - Covered in ENEE660
- Write X as function of acceleration
- Set both sides equal to each other!

$$\mathbf{F} \coloneqq \frac{\mathbf{X}}{Z} \quad \Longrightarrow \quad \dot{\mathbf{X}} = \mathbf{F}Z$$

$$\mathbf{X}(t) = \underbrace{\begin{bmatrix} 1 & 0 & \int_0^t F_X(\lambda) \Phi_{F_Z}(\lambda) d\lambda \\ 0 & 1 & \int_0^t F_Y(\lambda) \Phi_{F_Z}(\lambda) d\lambda \\ 0 & 0 & \Phi_{F_Z}(t) \end{bmatrix}}_{\Phi_{F_Z}(t)} \mathbf{X}_0$$

$$\mathbf{X}(t) - \mathbf{X}_0 = t\dot{\mathbf{X}}_0 + \underbrace{\int_0^t \left(\int_0^\lambda \ddot{\mathbf{X}}(\lambda_2) d\lambda_2\right) d\lambda}_{\mathcal{J}\{\ddot{\mathbf{X}}\}(t) \coloneqq}$$

Full Case – Phi/Tau Constraint

• Setting both sides equal results in Phi-constraint

$$(\Phi(t) - I) \begin{bmatrix} 0\\0\\Z_0 \end{bmatrix} - t\dot{\mathbf{X}}_0 = \mathcal{J}\{\ddot{\mathbf{X}}\}(t)$$
(Φ -constraint)

• Substitute $\dot{\mathbf{X}} = \mathbf{F} Z_0$ to get Tau-constraint

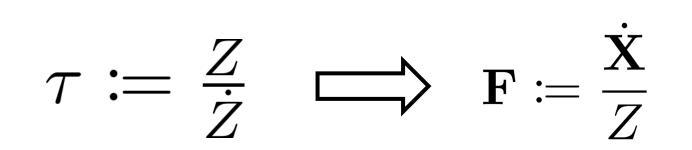
$$\underbrace{\begin{pmatrix} \Phi(t) - I - t \begin{bmatrix} 0 & 0 & \mathbf{F}(0) \end{bmatrix} \end{pmatrix}}_{E(t) \coloneqq} \begin{bmatrix} 0 \\ 0 \\ Z_0 \end{bmatrix} = \mathcal{J}\{\ddot{\mathbf{X}}\}(t).$$
(\tau-constraint)

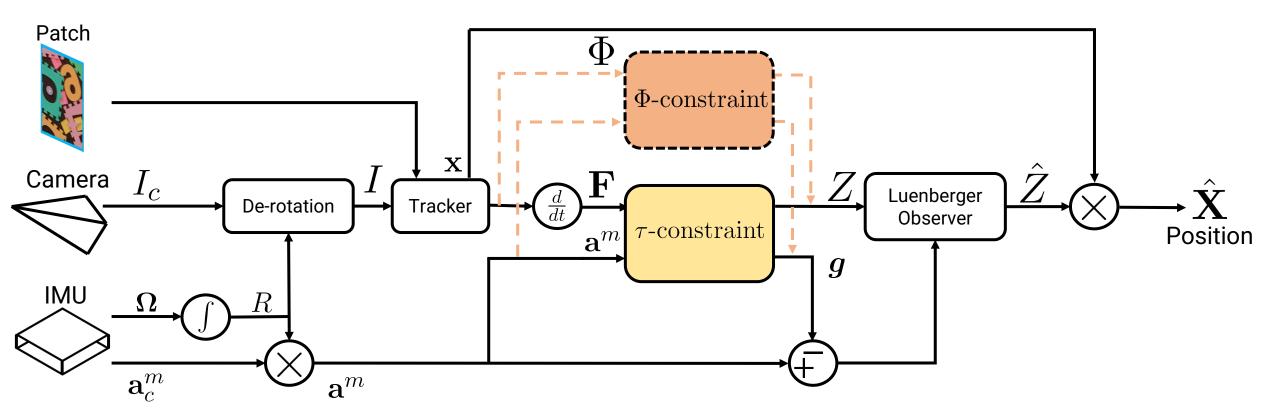
Estimating Distance Becomes a Linear

- Suppose acceleration with an unknown gravitational bias is available
- Can do linear least squares over time

$$\underset{Z_{0}, \dot{Z}_{0}, g_{Z}}{\operatorname{argmin}} \left\| (\Phi_{F_{Z}} - 1) Z_{0} - r \dot{Z}_{0} + \mathcal{J} \{ a_{Z}^{m} + g_{Z} \} \right\|_{2}^{2} \qquad (\Phi \text{-constraint})$$

$$\underset{Z_0,g_Z}{\operatorname{argmin}} \|E_Z Z_0 + \mathcal{J}\{a_Z^m + g_Z\}\|_2^2 \qquad (\tau \text{-constraint})$$

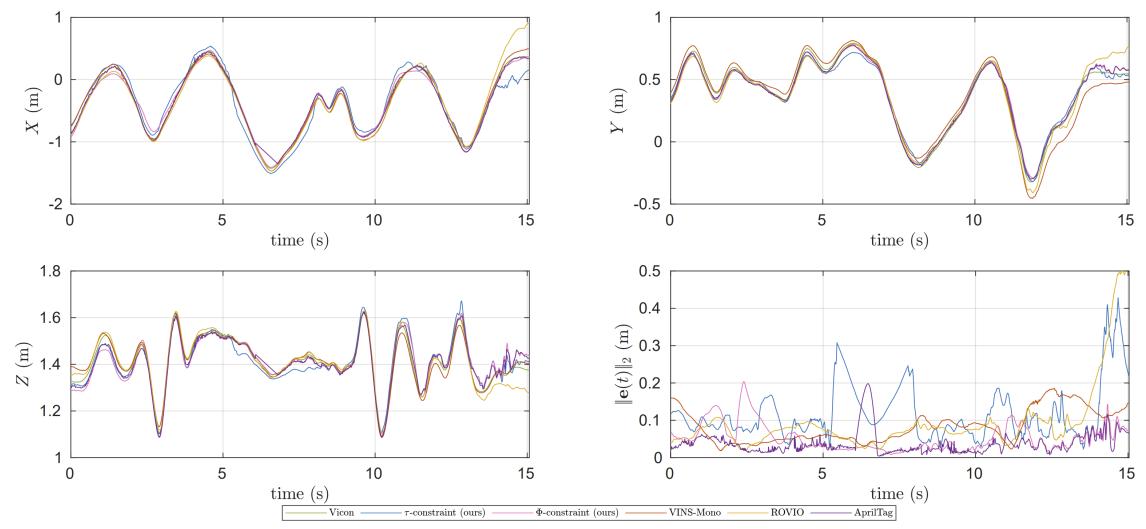




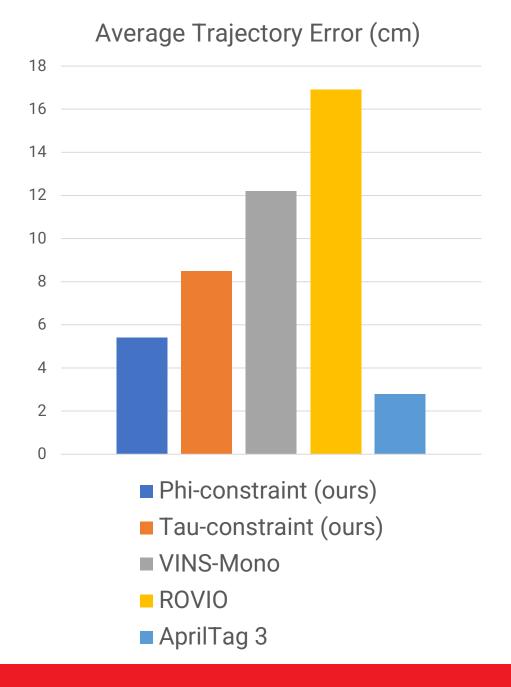
Sequence 2

Sequence 4

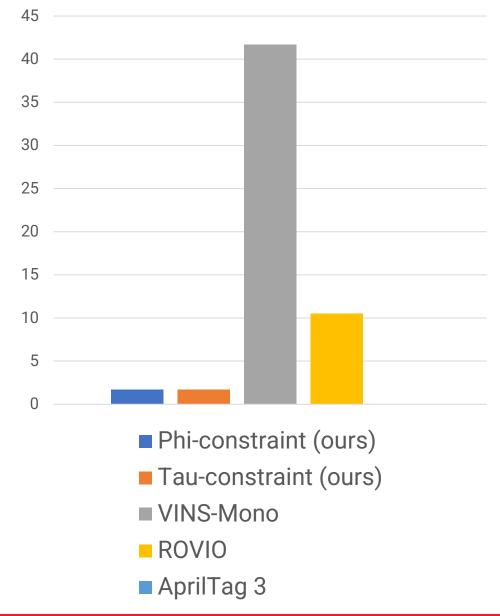
Sequence 1 Trajectory/Error



19



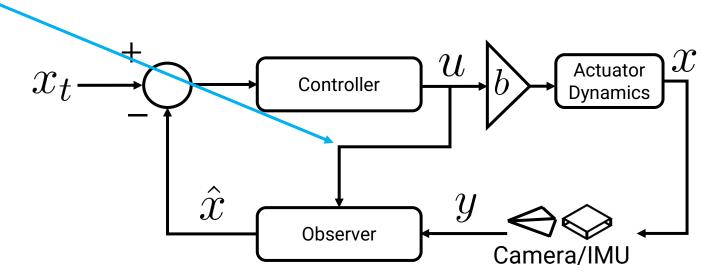
Time-per-frame (milliseconds)



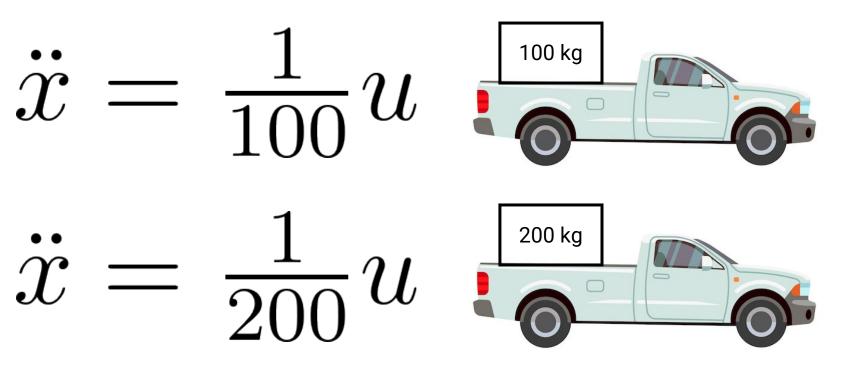
PRG

Stability Invariance

• We still have not used control effort in observer



Control effort and acceleration

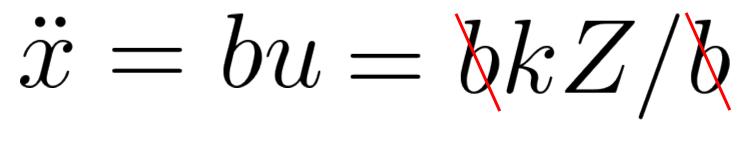


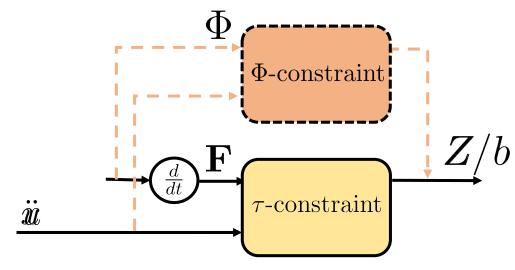
Scaled State Estimates Using "u"

- Recall the Phi/Tau constraints result in linear least squares problems
- Using control effort in place of acceleration results in scaled state estimate

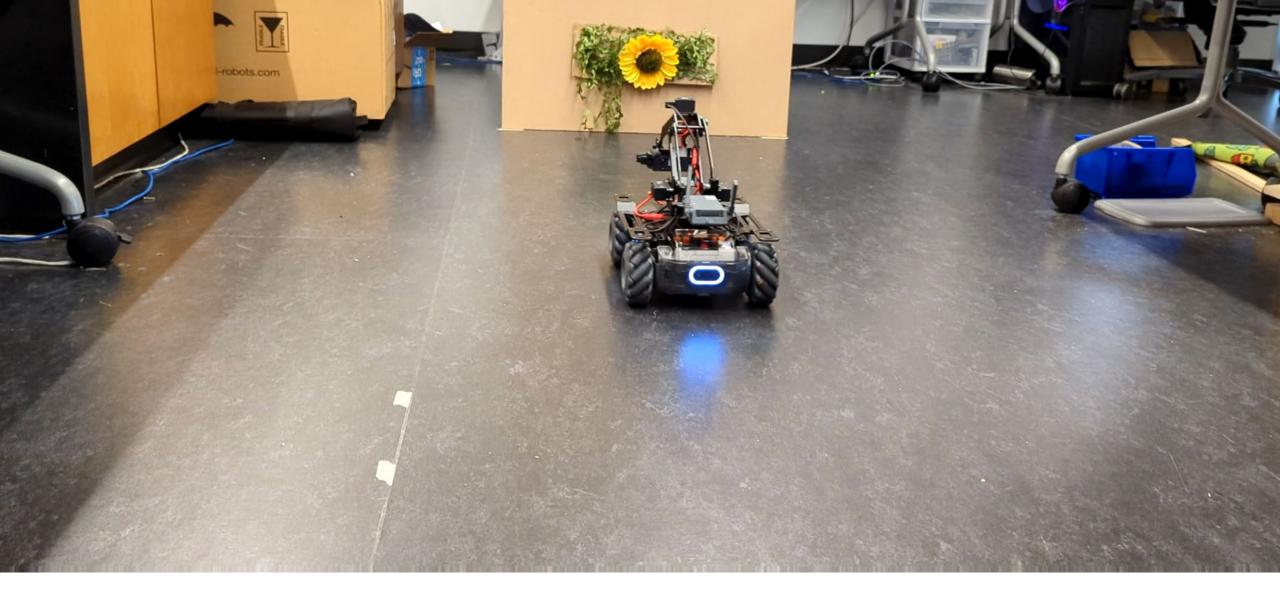
$$\begin{aligned} \underset{Z_{0},\dot{z}_{0},g_{Z}}{\operatorname{argmin}} & \left\| (\Phi_{F_{Z}}-1)Z_{0}-r\dot{Z}_{0}+\mathcal{J}\{a_{Z}^{m}+g_{Z}\} \right\|_{2}^{2} \\ \implies \begin{bmatrix} Z \\ \dot{Z} \\ g_{Z} \end{bmatrix} = (A^{T}A)^{-1}A^{T}\ddot{x} \\ \ddot{x} = bu \implies \ddot{x}/b = u \\ \implies \begin{bmatrix} Z/b \\ \dot{Z}/b \\ g_{Z}/b \end{bmatrix} = (A^{T}A)^{-1}A^{T}u \end{aligned}$$

Scaled State Estimates Using "u"

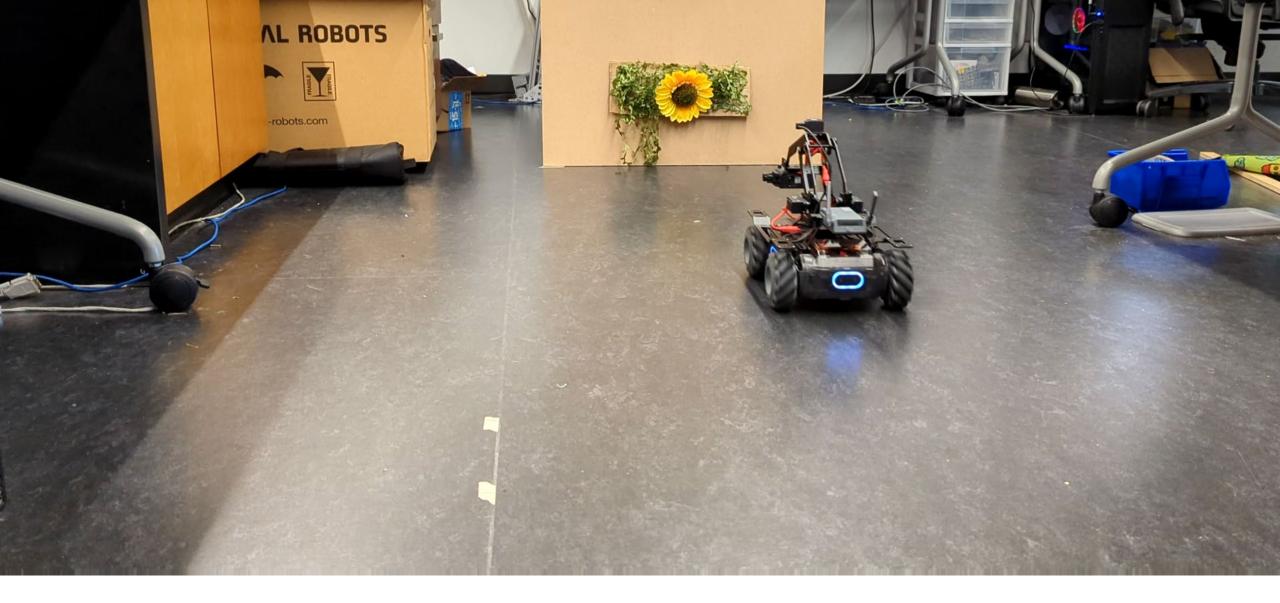




b = 1, measured acceleration



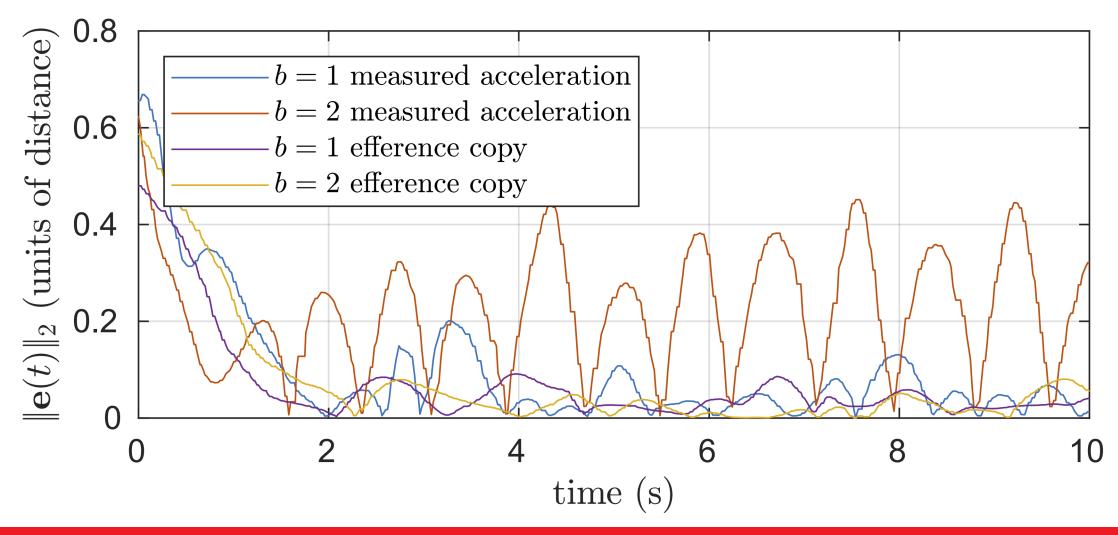
b = 1, efference copy



b = 2, measured acceleration

b = 2, efference copy

Oscillations

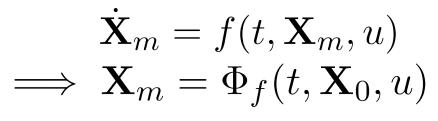


How to Use This Approach?

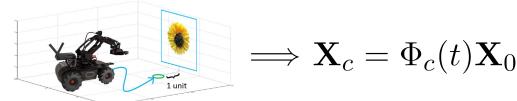
• Three Easy Steps

PRG

- Measure a bounding box with a camera
 - Bounding box will give you Phi or F
- Relate bounding box params to motion model
- Apply optimization to a window of time
 - Can use a recursive observer, pure optimization, etc
 - Feedback linearized models will result in linear problems
- Full Paper: TTCDist: Fast Distance Estimation From an Active Monocular Camera Using Time-to-Contact, Levi Burner, Nitin J. Sanket, Cornelia Fermüller, Yiannis Aloimonos <u>https://arxiv.org/abs/2203.07530</u>



 $\min_{\mathbf{X}_0} \|\mathbf{X}_m - \mathbf{X}_c\|$



Conclusion

- Took a control theoretic approach to monocular distance estimation
- Found a linear equality constraint that allows fast and accurate estimation of distance
 - Achieved competitive trajectory estimation performance
 - 6.2x and 25x faster than ROVIO and VINS-Mono
 - 30-70% less centimeters of average trajectory error
- Found that in certain cases, stability margins become invariant
 - Idea should be more fully developed into a form of adaptive control

Thanks to my Collaborators and Sponsors!

Prof. Nitin Sanket

Dr. Cornelia Fermüller

Prof. Yiannis Aloimonos

