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Abstract

Tracking objects in the visual-field is required for numerous computer vision and robotics applications. The Kanade-Lucas-
Tomasi (KLT) tracker is a workhorse that allows this to be done quickly and efficiently. The basic idea is that a template
image of a tracked object (say a ball, or a picture on the wall) should be equal to some subset of the incoming pixels from a
camera. However, because the camera’s available on today’s market are fundamentally discrete time, the KLT tracker considers
only discrete time optimization, without necessarily considering the dynamics of the camera under motion. Because of this,
algorithms using a KLT tracker may require an internal optimization loop to “converge” before emitting state estimates. This
can result in lag, and there is always the problem of deciding when the optimization has “converged”. Towards alleviating
this issue, this project considers a simplified version of the problem with the restriction that all methods used must be
able to evaluated as part of a continuous time system. To make the problem tractable, several simplifying assumptions are
made, including no rotation, motion along only the Z axis, and that the image patch tracked that is parallel to the imaging
plane. With this framework setup, Newton-Raphson Flow and continuous time-regression (as used for deterministic system
identification) are used to simultaneously identify the four states and one unknown parameter of the system. Namely, the
states are the X, Y , Z position of the camera and the velocity along the Z axis. The single system parameter is the position
of the plane along the worlds Z axis. The method was shown to work in simulation, however a rigorous proof of stability is
still lacking. However, future work may find sufficient conditions for stability and some suggestions for accomplishing this are
given.

Key words: Newton-Raphson Flow, System Identification, Lucas-Kanade tracking, Optical-Flow, Observability after
Perspective Transformation

1 Introduction

The Kanade-Lucas-Tomasi (KLT) tracker is a workhorse in computer vision that allows tracking of points or
“patches” across a sequence of images. While the algorithm has been well studied in discrete time, in the patch-
tracking case it relies on an internal optimization loop that must “converge” before the arrival of the next frame
[1–3]. The number of iterations the optimizer must complete is typically unknown apriori due to unknown magnitude
of motion of the tracked patched, and convergence rates that depend on the texture of the patch. Further, heuristics
such as “small” magnitude of the parameter updates are often used as the stopping condition for the optimizer
[3]. Thus, there is much to be done in understanding mathematically rigorous conditions which ensure the KLT’s
algorithms reliability.

There is a striking historical parallel that can be drawn between the KLT situation and the story of the “MIT
gradient rule”. The gradient rule was known to work well in practice, but sufficient conditions for correct operation
were not rigorously understood. When the gradient rule was deployed on an experimental aircraft, there were many
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successful flights. However, eventually the gradient rule failed, leading to loss-of-life of the pilot [4]. Similarly, the
KLT tracker is essential to many robotics applications, and has been tested extensively, but a rigorous understanding
of necessary and sufficient conditions for stability are lacking.

To work towards solving this fundamental problem, this project sought a continuous time extension of the Lucas-
Kanade (LK) tracker, for static, planar scenes, and known three dimensional acceleration of the camera. We call it
the LK tracker because Tomasi’s contribution was to introduce the criteria for selecting patches to track and when
to stop tracking them. The literature frequently seems to refer to the LK-tracker when the patch selection process
is not being discussed (as is the case here).

Originally, the goal was to employ a mathematical approach inspired by the Sondhi and Mitra’s seminal work on
adaptive filtering and the insightful mathematical analysis provided by Khalil on Model Reference Adaptive Control.
By doing so it was hoped that necessary and/or sufficient conditions on the acceleration of the camera, and bounds
on the “learning-rate” required for 1st or 2nd order gradient flows, to achieve successful “tracking” of a patch in a
planar scene would be found [5,6].

A lot of the time spent on this project was put towards attempting to lay down the mathematical framework
required to realize the above goals. However, due to the complicated and nonlinear nature of the equations that
model the camera, it was not satisfactorily worked out (I have stacks of notes to prove it). In order to finish with
something on time, it became necessary to significantly restrict the scope of the system considered. Specifically to
the case of a planar scene, perpendicular to the optical axis of the camera, where the camera moves only along
the Z axis, and feedback is provided by both the camera and linear accelerometer (gravitational bias removed).
Thankfully, considering this greatly simplified form turned out to be enough to gain insights useful for future work.
I am convinced that with a little more work it would not be hard to extend the methods to full three dimensional
motion with gravitational bias in the acceleration measurements. Further, the case of a plane slanted in a single
direction should not be terribly difficult to work out. However, the case of a plane slanted in any direction remains
illusive. Further, the proof of stability of the even the simplest form of the problem still needs more work, and this
is likely to be the hardest part. Such a proof of stability should ensure ensure convergence of the observed states
and estimated plane parameters to their true values. This includes the metric depth as well the relation between all
points of the patch at all times.

Regardless, the continuous time Lucas-Kanade problem is still exciting and novel because it is more than just a
mathematical curiosity. By formulating the problem in continuous time, numerical methods will be able to estimate
solutions to the resulting differential equation. The bounds on the quality of the resulting approximation may provide
rigorous justification for the required frame-rate of a traditional camera given appropriate bounds on trajectory
and the bandwidth of scene texture. Further, such analysis when extended to the stochastic setting could allow
understanding the best trajectory for a camera to follow in order to achieve a minimum variance estimate of position
and homography. This is nothing more than a minimum-variance control problem with a camera. It seems likely
that the trajectory will depend on the geometry and the texture of the scene the camera is moving in. Thus, I hope
to be able to continue working on this topic in the future.

In the Method’s section that follows, the mathematical framework for the imaging system is introduced first. Then
the adaptation of the Lucas-Kanade tracker to continuous time is done using Newton-Raphson flow [4]. It is shown
that image information alone is not enough to determine the state and the planes parameters. Thus, continuous-time
regression is introduced to determine the parameters of the planar patch under consideration using theory from class
which is also found in [7]. With the mathematical foundations in place, it shown how to integrate everything above
into a Luenberger style observer and provide a brief discussion on how a proof of stability might proceed. The
method’s section concludes with describing a simulation used to validate the proposed method and ensure it is not
“totally wrong”. Afterwards, typical Results, Discussion, and Conclusion sections appear.

2 Methods

2.1 Formulation

2.1.1 Imaging Model

Consider a camera pointed at a planar patch in a scene as illustrated by Figure 1. The camera is assumed to move
along the Z axis only, while the the optical axis points in the Z direction. In practice, this assumption of no-rotation
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Fig. 1. The above figure shows the coordinate system and the “tracked patch” relative to the initial camera position.

is a reasonable assumption because over short time periods inexpensive gyroscopic sensors can be used to compensate
for orientation changes.

Let the set of 3D points associated with the planar patch be given by the set M . Let the planes normal be given
by [0, 0, 1]. This restriction forces the plane to be parallel to the imaging plane. While this simplifying assumption
reduces accuracy in practice, it helps keep the following derivations from becoming too complicated to produce
insights. Finally, let d be the depth of the plane at X1, X2 = 0. Then the set M is defined by

M =
{
X ∈ R3 |X3 = d

}
. (1)

Let the camera’s positional trajectory be given by T (t) ∈ R3,∀t ≥ 0 and assume it to be continuous. Further, let
T (0) = 0 meaning that the camera is assumed to start at the origin. Then it is easy to verify that position of a
point X on the planar patch in the camera frame is X − T (t). Then, assuming a pinhole model, a point X on the
patch M projects onto point x ∈ R2 on the image plane. Define the function x(t,X) to represent the position of this
projection.

x(t,X) :=
1

X3 − T3(t)


fx 0 cx

0 fy cy

0 0 1


︸ ︷︷ ︸

K

[X − T (t)] (2)

Where K is called the camera “intrinsics” matrix and encodes the center of the imaging surface and the focal length.
For this project, it is assumedK = I3×3. This can be safely assumed in practice if the camera is calibrated. Notice that
x(t,X) ∈ R3 with x3(t,X) = 1,∀t ≥ 0. This definition is common in computer vision and is called a “homogeneous
coordinate”. Also notice that clearly T3(t) ̸= 0,∀t else the equation is ill-posed. In practice ∃ϵ > 0 s.t. T3(t) ≥ ϵ,∀t
else the camera cannot “see” the patch.

It is desirable to write the right hand side of this projection equation entirely in terms of x(0, X), T, d. This devel-
opment would mean that the position of all points of the planar patch in the imaging plane could be understood
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in terms of their initial position in the imaging plane, the position of the camera, and the planes parameters. In
computer vision the result is called a perspective transformation, however it is not usually written in terms of the
minimum number of physical quantities, so it is re-derived here [3,8].

Because K is always invertible, x(0, X) can be brought in through the relation X3x(0, X) = X revealing

x(t,X) :=
1

X3 − T3(t)
[X3x(0, X)− T (t)] (3)

However since X3 = d

x(t,X) :=


d

d−T3(t)
0 −T1(t)

d−T3(t)

0 d
d−T3(t)

−T2(t)
d−T3(t)

0 0 1

x(0, X) (4)

This expression is closely related to the “affine homography” from computer vision. However, the affine homography
is usually not written in terms of real quantities as above and it is allowed to have arbitrary values in all entries
except the bottom row.

For convenience define

p1(t) :=
d

d− T3(t)

p2(t) :=
−T1(t)

d− T3(t)

p3(t) :=
−T2(t)

d− T3(t)

p(t) :=
[
p1(t) p2(t) p3(t)

]T
W (t, p, x) :=


p1(t) 0 p2(t)

0 p1(t) p3(t)

0 0 1

x

(5)

.

Then x(t,X) can be expressed concisely as

x(t,X) = W (t, p, x(0, X)) (6)

.

Thus, the projection of points X on the planar patch in the imaging plane (x(X, t)) at all times is a continuous
function of their initial point on the imaging plane, x(t,X), the planes depth d, and the position of the camera. In
computer vision W is called a “warp” function.

Define the image intensity function I(t, x) to be the the brightness of the scene projected onto pixel x at time t.
Using W , I(t, x) can be written in terms of I(0, x) for all x corresponding with a point on the patch X.

I(t,W (t, p, x(0, X))) = I(0, x(0, X)) (7)
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This constraint is known as the “brightness constraint” in computer vision. Optimizing this constraint using the
parameters p is the basis of the Lucas-Kanade tracker. Commonly I(0, x(0, X)) is called the “template” image.
Define IT (x) := I(0, x(0, X)) to represent this template image.

2.1.2 A continuous time extension of Lucas-Kanade

Here the Lucas-Kanade tracker for the forward additive case is derived using our notation. The Lucas-Kanade
method attempts to find the parameters p through Gauss-Newton iteration over the squared l2 norm of error in the
brightness constraint over the patch. Specifically the cost is

J(p) :=
1

2

∫∫
X∈M

[I(t,W (t, p, x(0, X)))− IT (x(0, X))]
2
dX (8)

.

Minimization proceeds by iteratively minimizing J using the linearization of I(t,W (t, p, x(0, X))). Let J̃ represent
the cost with this substitution, then

J̃(∆p) :=
1

2

∫∫
X∈M

[I(t,W (t, p, x(0, X))) +

(
∂I(t,W (t, p, x(0, X))

∂x

)T
∂W (t, p, x(0, X))

∂p
∆p − IT (x(0, X))]2dX (9)

.

The notation becomes bulky quickly. If the function arguments are dropped it can be understood more clearly

J̃(∆p) :=
1

2

∫∫
X∈M

[
I +∇xI

∂W

∂p
∆p − IT

]2
dX (10)

.

The minimizing ∆∗
p is then

∆∗
p := argmin

∆p

J̃(∆p) = −

[(
∇xI

∂W

∂p

)T (
∇xI

∂W

∂p

)]−1 ∫∫
X∈M

(
∇xI

∂W

∂p

)T

[I − IT ] dX (11)

.

Lucas-Kanade methods then proceed by iterating pk+1 = pk +∆∗
pk

until ∥∆∗
pk
∥ is small.

Historically, Gauss-Newton iteration is used because it has been found empirically to be much faster than other
methods while remaining just a reliable [3]. Additionally, direct gradient descent is also known empirically to not
always solve the problem. Unsurprisingly, in behind-the-scenes experiments it was found that direct gradient descent
in continuous time on p did not work satisfactorily either. The natural extension of Guass-Newton iteration is the
Newton-Raphson flow as explained by Professor Sean Meyn in his new textbook [4]. In our case it is given by

dp

dt
:= −

[
∂2J

∂p2

T
∂2J

∂p2

]−1
∂J

∂p
= −

[(
∇xI

∂W

∂p

)T (
∇xI

∂W

∂p

)]−1 ∫∫
X∈M

(
∇xI

∂W

∂p

)T

[I − IT ] dX (12)

.
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2.1.3 The relation between p and T

The system identification and observer design that follows will attempt to directly determine T and the planes
parameter d. Thus, if the Newton-Raphson flow is to be used on p then Ṫ and ḋ must be determined in terms of ṗ
since p constrains T and d. Referring back to the definition of p (5),

ṗ1(t) :=
d

dt

d

d− T3(t)

ṗ2(t) :=
d

dt

−T1(t)

d− T3(t)

ṗ3(t) :=
d

dt

−T2(t)

d− T3(t)

(13)

Some manipulation reveals

ḋp1 + dṗ1 − Ṫ3p1 − T3ṗ1 = ḋ

ḋp2 + dṗ2 − Ṫ3p2 − T3ṗ2 = −Ṫ1

ḋp3 + dṗ3 − Ṫ3p3 − T3ṗ3 = −Ṫ2

(14)

.

This is a linear algebra problem, thus,

ṗ =
1

d− T3


1− p1 0 0 p1

−p2 −1 0 p2

−p3 0 −1 p3


[
ḋ

Ṫ

]
(15)

.

Clearly, ṗ does not uniquely determine ḋ and Ṫ . Indeed three things cannot uniquely determine four things. Further,
it is well-known that minimizing quanitites in the imaging space cannot uniquely determine the scale of depth. An
additional constraint is needed to uniquely determine ḋ and Ṫ . Further, some assurance is needed that this constraint
will not cause d and T to converge to their true values.

2.1.4 Continuous time regression using acceleration measurements

If an inertial sensor is mounted to the camera, then it can be assumed T̈ is known. Technically in practice only T̈ +g
where g is the gravitational acceleration in the camera frame is known. However, for the purposes of this project g
is neglected. Previous work that is currently under review suggests that g should also be able to be determined with
a few extensions to the theory below.

If this project were not restricted to a continuous time dynamical system, then would be easy to optimize the
following constraint between T̈3 and p1

T3(t) = T3(t0) + Ṫ3(t0)t+

∫ t

t0

∫ σ

t0

T̈3(σ2)dσ2dσ

⇐⇒ d
d− T3(t)

d
= d

d− T3(t0)

d
− Ṫ3(t0)t−

∫∫
T̈3(σ2)dσ2dσ

⇐⇒ p1(t)d = p1(t0)d− Ṫ3(t0)t−
∫∫

T̈3(σ2)dσ2dσ

(16)
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Due to the double integral of T̈3, which is measured value and associated with noise, in practice it is important to
consider a finite window of previous measurement history. Thus, to optimize the above constraint in a continuous
time estimator, one would need to calculate a suitable norm (say the 2-norm) over a window of time and set ḋ to the
negative gradient of that cost with respect to d. This can be done, but it is not easy to do in a continuous time. A
more elegant solution comes from considering the deterministic identification problem using regressor vectors. The
derivation proceeds in a manner similar to the method presented in-class.

Consider,

p1 =
d

d− T3

⇐⇒ d
d2

dt2

(
1

p1
− 1

)
= −T̈3

(17)

.

For convenience, define m := 1
p1

− 1. Then, taking the laplace transform reveals

s2dm(s) = −T̈ (s) (18)

.

If both sides are multiplied by the stable transfer function given by 1/(s+ λ)2, λ > 0, then

d
s2

(s+ λ)2
m(s) =

−1

(s+ λ)2
T̈3(s)

⇐⇒ d
(s+ λ)

2 − 2λs− λ2

(s+ λ)2
m(s) =

−1

(s+ λ)2
T̈3(s)

⇐⇒ dm(s) =
−1

(s+ λ)2
T (s) +

2λs+ λ2

(s+ λ)2
m(s)

(19)

.

Letting the impulse response of (2λs+ λ2)/(s+ λ)2 be given by h1 and 1/(s+ λ)2 by h2. Then assuming all initial
conditions are zero

0 = d [m(t)− (h1 ∗m)(t)] + (h2 ∗ T̈3)(t) (20)

.

Where ∗ denotes convolution in time. Thus, a constraint between the measured quantity T̈3 and d has been found.
An instantaneous cost on this constraint can be defined as

Ja(t, d) :=
1

2

(
d [m(t)− (h1 ∗m)(t)] + (h2 ∗ T̈3)(t)

)2

(21)

.

Then setting ḋ to the negative gradient of Ja would be performing gradient descent on d so that the “acceleration”
of p1 is scaled to the “acceleration” measured T̈3. The low-pass filters are essentially taking the place of the norm
over a window of time considered earlier.

Thus, the resulting update rule for ḋ has been found
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ḋ = −dJa
dd

= −
(
d [m(t)− (h1 ∗m)(t)] + (h2 ∗ T̈3)(t)

)
∗ [m(t)− (h1 ∗m)(t)]

(22)

.

2.1.5 Ṫ and ḋ are now determined by the losses

Considering, everything above, (15) provides a method to optimize the brightness constraint with Newton-Raphson

flow through Ṫ and ḋ. However, that constraint did not uniquely determine Ṫ and ḋ. So, by further considering p1
and T̈3 another constraint was found revealing:

[
−dJa

dd

ṗ

]
=

1

d− T3


−(d− T3) 0 0 0

1− p1 0 0 p1

−p2 −1 0 p2

−p3 0 −1 p3


︸ ︷︷ ︸

G−1(d,T )

[
ḋ

Ṫ

]
(23)

It is easy to verify that the above matrix is always full rank and invertible because p1 cannot equal zero (that

would require T3 to be infinite). Thus, Ṫ and ḋ are uniquely determined by Newton-Raphson flow on the brightness

constraint and gradient descent on the regression between d, T̈3, and p1. Call this matrix G−1.

2.2 The observer

The previous discussion really only considered the static case (where the camera is not moving). Thus, a larger

framework is needed to integrate the above constraints in a method that adjusts T̂ and d̂ such that T̂ → T and

d̂ → d. A straightforward method do so is inspired by a Luenberger observer.

Let the “corrections” from the continuous time Lucas-Kanade and continuous-time regression be given by

d

dt


d̂

T̂
ˆ̇T

 =


0
ˆ̇T

T̈

+ LG(d̂, T̂ )

[
−dJa

dd

ṗ

]
(24)

Clearly L is the classical observer gain. Additionally, while G and everything to the right of it are highly nonlinear,
their purpose is simply to match the template image It with the incoming image I while scaling d so that T3/d

matches the measured acceleration. Considered this way, G(d, T )
[
−dJa

dd ṗ
]T

is actually a descent direction on the

observed output error in the same way that outputs of a linear system, y − ŷ, provide descent direction.

Since the motion along the X,Y axis is zero, a more specific form of the proposed observer is given by

d

dt


d̂

T̂
ˆ̇T3

 =



0
0

0
ˆ̇T3


T̈3


+ LG(d, T )

[
−dJa

dd

ṗ

]
, L =



l1 0 0 0

0 l2 0 0

0 0 l2 0

0 0 0 l2

0 l3 0 0


(25)
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Such a structure mimics the Luenberger observer for a two dimensional integrator when feedback is available only
from the highest level state. In that case the second column of L, without the zero entries, would be the Luenberger
gain.

2.3 Some comments on stability

Global stability of the observer is out of the question. This is because the Lucas-Kanade tracker will only work if
the parameters p resulting from T and d result in “looking at” at a position in the incoming image that is close to
the template. This is easily verified in simulation.

Further, stability is dependent on the property of the brightness intensity function I. Clearly, I must be “sufficiently

rich” for ṗ to result in descent direction for T̂ and d̂. For example, if the planar patch is a single color, then ṗ = 0, ∀t
and there is no hope of convergence.

Additionally, stability is dependent on the excitation provided to the system. If acceleration is zero, then continuous
time-regression has no-hope of finding d. However, as shown in recent work under review for a related problem, the
only technical condition on acceleration was that it be non-zero. A similar relation should hold for this problem since
the purpose of the continuous time regression is simply to scale d so that the curvature of T3 matches the measured
acceleration. As long as there is acceleration, there should be curvature to be matched.

Thus, there remains hope for proving some kind of stability, but it will have to be the subject of future work. Below,
some basic ideas that if followed up on, would likely result in a sufficient condition for stability are presented.

Let the error e(t) be defined as

e(t) :=


d− d̂

T − T̂

Ṫ − ˆ̇T

 (26)

.

Then considering the candidate LaSalle function

V (e(t)) =
1

2
∥e∥22 (27)

Then it is easy to see that V̇ is given by

V̇ = eT ė = eTAe− eTLG(d̂, T̂ )

[
−dJa

dd

ṗ

]
, A :=



0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


(28)

Clearly, A is not Hurwitz. Regardless, in this form, it begins to look tractable to determine the stability properties
of the entire system as well as the required hypothesis. One hypothesis that is likely to be needed is as follows.
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Suppose the camera is initially looking at a sufficiently rich scene patch M such that the Lucas-Kanade tracker
would converge if the camera is not moving. Rigorously this would mean:

∃δ s.t. ∀∥p−
[
1 0 0

]
∥ < δ, p →

[
1 0 0

]
as t → ∞ (29)

Then, in the case where the camera is moving, it stands to reason that if the camera has bounded velocity, and the
trajectory is bounded away from the planar patch being viewed, then setting a high enough gain to the calculation
of ṗ will result in p remaining within the required neighborhood.

This restriction on p will restrict the space T̂ and d̂ live on to a neighborhood around one dimensional manifold.

Further, since T̂ and d̂ are related by a a differentiable function (so long as T3 is bounded away from d). It seems

reasonable to expect that the continuous-time regression would then guide T̂ and d̂ to T and d respectively.

2.4 Experimental Evaluation

Even though a proof of stability was missing, it seemed wise to use simulation to determine if there was any hope
of good results before investing significant time in a proof. To do so, the proposed observer was evaluated using
Simulink. To simulate a “continuous time camera” (which does not exist on today’s market), the trajectory T1 = 0,
T2 = 0, T3(t) = 0.25∗ sin(t) and plane parameters d = 1 were used to continuously warp a single greyscale real-world
image into what would be seen by a camera moving along that trajectory. The image was resized to 320x240 pixels
and blurred with a 2D Gaussian filter with a standard deviation of 4 pixels.

The incoming image’s gradients were approximated by the popular Sobel operator [8]. For clarity, the operation is
repeated here. The kernels are assume to have a height and width of three pixels.

∇xI ≈ 1

8



1 0 −1

2 0 −2

1 0 −1

 ∗ I


1 2 1

0 0 0

−1 −2 −1

 ∗ I

 (30)

The continuous time Lucas-Kanade tracker was configured to track a 57x41 pixel patch with top-left corner at pixel
location 166x72 as illustrated by Figure 1. The spatial integral required for calculating the Lucas-Kanade correction
vector was calculated discretely by summing over all the pixels in the patch.

The continuous time regressions transfer function parameter λ was set to 2π. The output of the continuous-time
regression was not used for 2 seconds in order to minimize the transient effects of mis-match in the initial conditions.

The observer gains were set to l1 = 10, 000, l2 = 25, and l3 = 2.5.

The initial conditions for the observer were perturbed from their true values. The true initial condition was d = 1,

T = 0, Ṫ = 0. However, the initial condition of the observer were set to d̂ = 1.1, T̂ = [−35,−10,−0.2], and ˆ̇T = 0.

The “ode45” solver was used with default parameters, except for configuring the max step size to 0.01 seconds, to
simulate results over a 30 second interval. Configuring the step size to something “small”, like 0.01 seconds, was
necessary to get consistent numerical results.

3 Results

Figure 2 shows the results from the Simulink simulation. All three top-level states T quickly converge to be very
close to their true values. This is due to the continuous-time Lucas-Kanade tracker quickly converging to “center”
the incoming image on top of the template image. This process is visualized in Figure 3. There the initial incoming
image, the template image and the difference is shown at time t = 0 and t = 0.34 as well as Lucas-Kanade tracker’s
loss J .
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Fig. 2. The above plots show the convergence of d̂ and T̂ to the true values. Note that T3 is the only time varying real quantity.

The plot of
˙̂
T3 is not included since it is known to converge due to convergence of T3 and measurements of T̈3.
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0

2
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6

Fig. 3. (left) The LK trackers error summed over the template image. (right) The warped incoming image considered at three
critical times and the difference between that and the template. The three critical times are the the initial time, the initial
convergence to a local minima, and the final time. The difference images black levels have been shifted to grey so that both
positive and negative errors can be visualized.

However, there is a constant multiplicative offset that slowly converges to 1 as d converges to the true value. The
system parameter d, converges much more slowly than the other states. This is because it was necessary to use a
very large gain (10,000) to get the convergence pictures. Higher values could result in instability. It was noticed that

a very small step max timestep (0.01 seconds) was necessary to get stable results for the trajectory of d̂.

4 Discussion

First the experimental results are discussed. As expected, the continuous time Lucas-Kanade tracker quickly con-
verged to some local minima within approximately 0.34 seconds. This minima greatly improved the match between
the incoming image and the template image as can be seen in Figure 3. Further, as indicated by the plots in Figure 2

it appears this convergence restricted d̂ and T̂ to some neighborhood around the true values immediately. Then, the
continuous time regression for the planes parameter d slowly began to converge. As it converged, all three elements
of T̂ (particularly T3 which is the estimate of Z position) continued to converge to their true values.

Because the Lucas-Kanade tracker is tracking a moving patch, it cannot “keep up” on its own until the planes
parameter d becomes known. As a result, the slight mismatch between the incoming image and the template slowly
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decreased in a manner qualitatively similar to the convergence of d̂. Notice the pattern of “bumps” in J is very

similar to the bumps in d̂’s trajectory.

It should be noted that the template image shown in Figure 3 is “super blurry” compared to the original photo
showed in Figure 1. Blurring this much was necessary to prevent the differential equations from becoming “too
stiff” and taking excessively long to solve. In computer vision problems, it is not typically necessary to perform so
much blurring to get a working system. However, blurring and using multi-scale pyramids is a common method for
ensuring better convergence of LK trackers [8]. In this case, it would be of great interest to investigate this further
to understand if this stringent “blurring” requirement is fundamental or simply required for the numerical methods.

While the Newton-Raphson flow was introduced in (12) for solving the brightness constraint in a manner analogous
to Gauss-Newton iteration, it does not seem strictly necessary. In practice Gauss-Newton is known to perform well
for the Lucas-Kanade problem [3], and in my own experiments gradient descent never worked at all. Both in the
discrete time case in some previous work and some experiments for this project that took place behind the scenes.
Understanding why regular gradient descent performs so poorly would be an interesting problem.

The continuous-time regression used to find d should also be able to easily extended to solve for d using motion
along the X or Y axis by considering p2 and p3 respectively. Developing this would be a trivially simple extension.

In the end, all the numerical result match the predictions made in the “Comments on Stability” subsection. Because
of this it seems likely that pursuing a proof of stability starting from (28), and including the hypothesis just below,
will be a fruitful, or at least insightful direction forward. Further, the proof for the more general case of a tilted
plane is likely to be very similar. Thus, the most pressing direction for future work is the stability proof.

One additional direction for future work, if a proof of stability is found, is to pursue the problem where the camera’s
velocity is bounded, but the bound is not known a-priori. It stands to reason that an “adaptive” Lucas-Kanade gain
would help to solve such a problem. Unfortunately, this idea was thought of just a few days before the report became
due, so it could not be pursued further.

5 Conclusions

A mathematical framework for a continuous time Lucas-Kanade tracker has been developed for the simplified case
of a planar scene, parallel to the camera’s imaging plane, and motion along the camera’s optical axis. The primary
development is to exchange Gauss-Newton iteration for Newton-Raphson flow. Additionally, continuous-time regres-
sion is used to regress the planes single parameter d. The results are combined in a Luenberger style observer. The
method was validated in a simulation, however additional work is needed to understand sufficient conditions for
stability. It is thought that proving stability in this simplified case will be insightful for the general case, and it is
recommended that this direction be pursued prior to extending the above results to general motion of the camera
or slanted patches.
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Fig. 4. The entire Simulink block diagram. It is a vector file so zooming in should work.

6 Appendix 1

For transparency, the complete block diagram model from Simulink, rendered in a vector format, is shown in Figure
4. The code listings for each Matlab function block in the simulation are also included.

6.1 Code listings for Matlab scripts and Matlab function blocks

6.1.1 Homography3params move 2.m

1 clear
2 close all
3

4 I = double(rgb2gray(imread(’test_small.jpg’))) / 255;
5 I = imgaussfilt(I,4);
6

7 T_roi = floor ([666 , 289, 896-666, 453 -289]/4);
8 I_t = I(T_roi (2):T_roi (2)+T_roi (4) -1, T_roi (1):T_roi (1)+T_roi (3) -1);
9

10 % Plane initially at Z=1 meter
11 d = 1.0; % Plane is defined by Z = 1
12 % Camera moves sinusoidally on the Z axis from the origin
13 T0 = [0 0 0];
14 % Moves with this amplitude
15 T_amp = 0.25;
16

17 % Perturb the initial state estimate from the true value
18 d_T_0 = [1.1 -35 -10 -0.2];
19 %d_0 = d_T_0 (1);
20 %T_0 = d_T_0 (2:4);
21

22 % regressor filters frequency
23 l = 2*pi;
24

25 %sim(’Homography3params_move_sim_2 ’);

6.1.2 d T to p.m

1 function p = d_T_to_p(d,T)
2 p = [d/(d-T(3)) ,...
3 -T(1)/(d-T(3)) ,...
4 -T(2)/(d-T(3))];
5 end
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6.1.3 d T to H

1 function H = fcn(d_T)
2

3 p = d_T_to_p(d_T(1), d_T (2:4));
4

5 H = [p(1), 0, p(2) ;...
6 0, p(1), p(3) ;...
7 0, 0, 1];

6.1.4 Generate X

1 function [K_x , K_y]= fcn(T, T_roi)
2

3 shape_T = size(T);
4

5 X = [1: shape_T (2)] + T_roi (1);
6 Y = [1: shape_T (1)] + T_roi (2);
7 [X, Y] = meshgrid(X,Y);
8

9 K_x = X;
10 K_y = Y;

6.1.5 dW dp

1 function [dW_dp_x , dW_dp_y ]= fcn(K_x , K_y)
2

3 dW_dp_x = zeros([size(K_x) 3]);
4 dW_dp_x(:, :, 1) = K_x;
5 dW_dp_x(:, :, 2) = 1;
6

7 dW_dp_y = zeros([size(K_y) 3]);
8 dW_dp_y(:, :, 1) = K_y;
9 dW_dp_y(:, :, 3) = 1;

6.1.6 dI dp

1 function dI_dp = fcn(dI_dx , dI_dy , dW_dp_x , dW_dp_y)
2

3 dI_dp = dI_dx .* dW_dp_x + dI_dy .* dW_dp_y;

6.1.7 dI dp squared

1 function hess_approx = fcn(dI_dp)
2 num_p = 3;
3 hess_approx = zeros(num_p , num_p);
4 for i = 1: num_p
5 for j = 1: num_p
6 hess_approx(i, j) = sum(dI_dp(:, :, i).*dI_dp(:, :, j), ’all’);
7 end
8 end

6.1.8 dJ dp

1 function dJ_dp = fcn(dI_dp , I_minus_T)
2

3 dJ_dp = reshape(sum(I_minus_T .* dI_dp , [1,2]), [1, 3]);
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6.1.9 dp dt to d T dt

1 function d_T_dt = fcn(dp_dt , d_T)
2

3 p = d_T_to_p(d_T(1), d_T (2:4));
4

5 d = d_T(1);
6 T1 = d_T (2);
7 T2 = d_T (3);
8 T3 = d_T (4);
9

10 A = [ 0 0 p(1) ;...
11 -1 0 p(2) ;...
12 0 -1 p(3)] / (d-T3);
13

14 b = [dp_dt (1); ...
15 dp_dt (2); ...
16 dp_dt (3)];
17

18 d_T_dt = linsolve(A, b);

6.1.10 d T to p1 inv

1 function p1_inv = fcn(d_T)
2

3 p1_inv = (d_T (1) - d_T (4)) / d_T (1);
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